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Abstract I provide an alternative way of seeing quantum computation. First, I describe an
idealized classical problem solving machine whose coordinates are submitted to a nonfunc-
tional relation representing all the problem constraints; moving an input part, reversibly and
nondeterministically produces a solution through a many body interaction. The machine can
be considered the many body generalization of another perfect machine, the bouncing ball
model of reversible computation. The mathematical description of the machine’s motion, as
it is, is applicable to quantum problem solving, an extension of the quantum algorithms that
comprises the physical representation of the interdependence between the problem and the
solution. The configuration space of the classical machine is replaced by the phase space of
the quantum machine. The relation between the coordinates of the machine parts now ap-
plies to the populations of the reduced density operators of the parts of the computer register
throughout state vector reduction. Thus, reduction produces the solution of the problem un-
der a nonfunctional relation representing the problem-solution interdependence. At the light
of this finding, the quantum speed up turns out to be “precognition” of the solution, namely
the reduction of the initial ignorance of the solution due to backdating, to before running
the algorithm, a part of the state vector reduction on the solution (a time-symmetric part in
the case of unstructured problems); as such, it is bounded by state vector reduction through
an entropic inequality. The computation mechanism under discussion might also explain the
wholeness appearing in the introspective analysis of perception.

Keywords Quantum computation · Quantum measurement · Speed up · Nondeterminism ·
Reversibility

1 Introduction

I have been invited to write about the early history of quantum computation as seen from my
special point of view, which I think hinges on the idea that computation is a reproduction of
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the workings of the mind. This might reflect my professional experience in artificial intel-
ligence, where the introspective analysis of our way of perceiving a pattern or associating
concepts is essential for the development of a pattern recognition algorithm or a cognitive
network. I got to quantum computation by shifting the interplay between introspection and
computation from the logical to the physical level. Here below I provide my line of thinking.
It starts from the wholeness (or unity) appearing in the introspective analysis of perception,
to get to a fundamental computation mechanism that, in my judgement, stands at the basis
of quantum computation.

For wholeness of perception, I mean the following. For example, in this moment, I see the
room in which I am working, an armchair, the window, the garden, and the Mediterranean
Sea on the background. In my visual perception, besides some aspects that are addressed by
artificial intelligence, like the recognition of patterns, there is another thing that should be
addressed by a physical information theory, the both obvious and striking fact that I see so
many things together at the same time. What I see is close to a digital picture whose speci-
fication would require a significant amount of information. And apparently we can perceive
a significant amount of information simultaneously all together, in the so called “present”.
Another example is our capability of grasping the solution of a problem. Reasonably, when
we grasp the solution, we should take into account at the same time the statement of the
problem, the solution, and the logical connection in between.

The idea that many things interact, are processed, at the same time can be formalized
by resorting to a notion of the Gestalt theory. Wholeness (in fact, Gestalt) is simultaneous
dependence between quantitative variables (e.g. [28]). Applied to a physical situation, this
definition becomes: the wholeness of a physical situation implies that there is simultaneous
dependence between all the quantitative variables describing it. An example is second New-
ton’s law “force equal mass times acceleration” in the case of a point mass. It establishes a
simultaneous dependence between the three quantitative variables that describe the physical
situation. For reasons that will become clear, it is important to note that this dependence
should be considered objectively perfect. If we see it as a mechanism whose degrees of free-
dom are the variables related by the law, this mechanism should be perfectly accurate, rigid,
and reversible—it is not the case that Newton’s law gets deformed because of flexibility
or jams because of friction or irregularities. Another important feature of the simultaneous
dependences that we find in Nature is that they can be nonfunctional, which is also the case
of Newton’s law. The change of one variable is correlated with an identical change of the
product or ratio of the other two variables, but does not determine their individual changes.
Correspondingly Newton’s law can host nondeterminism, in the form of the many body
problem. As we will see, a perfect nonfunctional simultaneous dependence enables a non-
deterministic form of computation isomorphic with many body interaction. Of this form of
computation one can say that any amount of information is processed at the same time.

We examine the relation between simultaneous dependence and computation. We can
start by checking that there is no simultaneous dependence in classical computation. Let us
consider the idealized bouncing ball model of reversible computation [22]. The variables
at stake are ball positions and momenta. Outside collisions, there is no simultaneous de-
pendence between the variables of different balls, which are independent of each other. In
the instant of (idealized) collision, there is simultaneous dependence between the variables
of the colliding balls, but this is limited to ball pairs (there can be several collisions at the
same time, but involving independent ball pairs, with no simultaneous dependence between
the variables of different pairs). The simultaneous collision between more than two balls is
avoided since it would introduce the many body problem, namely an undetermined dynam-
ics. No matter what computation size is, simultaneous dependence remains confined to ball
pairs, it does not scale.
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By assuming a perfect, nonfunctional simultaneous dependence between all computa-
tional variables, one can devise an idealized classical machine that nondeterministically
produces the solution of a system of Boolean equations under the simultaneous influence
of all equations. Boolean variables are mapped on real variables—the coordinates of the
machine parts. These are related by a perfect nonfunctional simultaneous dependence repre-
senting all the Boolean equations. Moving the “input” part of the machine instantly produces
a solution through a many body interaction (Sect. 2). This form of computation is essentially
different from classical computation, namely from the causal propagation of the input into
the output. For example, a many body interaction of this kind can produce two inputs such
that their product is a preassigned output; if this were an input-output propagation (which
is not), one should say that the input is produced with precognition of the output. I call the
nondeterministic production of the solution under a nonfunctional simultaneous dependence
representing problem-solution interdependence, simultaneous computation.

Noticeably, the mathematical description of the motion of the idealized classical machine
can represent a realistic quantum computation. We should replace the configuration space
of the classical machine by the phase space of the quantum machine. The nonfunctional
simultaneous dependence between the coordinates of the machine parts now applies to the
populations of the reduced density operators of the parts of the computer register before
and after state vector reduction. Reduction conserves this dependence, it occurs under it.
The populations before and after reduction are analogous to the coordinates of the classi-
cal machine, both perform a computation by changing under a nonfunctional simultaneous
dependence (representing state vector reduction in the quantum case, a perfect many body
interaction in the classical case, problem-solution interdependence in either case). That in-
finite classical precision can be dispensed for in the quantum framework was already noted
by Finkelstein [21].

It should be noted that the nonfunctional simultaneous dependence between the popula-
tions before and after reduction, functionally extends to all the amplitudes of the quantum
process throughout preparation, unitary development, and measurement. Under the extended
dependence, state vector reduction changes the forward development into the backward de-
velopment, i.e. the same unitary transformation but ending with the outcome of measure-
ment (Sect. 3).

Simultaneous computation is almost evident in the algorithms of Simon [32] and Shor
[31]. On the contrary, it is completely hidden in Deutsch’s [16] and Grover’s [23] algo-
rithms, which yield their speed ups through unitary evolutions (disregarding the probability
of error). This can be ascribed to the fact that these algorithms physically represent only the
procedure that leads to the solution, and are oblivious of the representation of the problem.
However, it suffices to add the physical representation of the problem to see simultane-
ous computation (that state vector reduction produces the solution through a nonfunctional
simultaneous dependence representing problem-solution interdependence). At the light of
this finding, the speed up becomes “precognition of the solution”, namely the reduction of
the initial ignorance of the solution due to backdating, to before running the algorithm, a
time-symmetric part of the state vector reduction on the solution. This holds in the case of
Deutsch’s and Grover’s algorithms, which address unstructured problems. More in general,
the speed up is bounded by state vector reduction through an entropic inequality (Sect. 4).

From the one side, the notion of simultaneous computation shows the existence of
a fundamental—reversible and nondeterministic—computation mechanism implicit in the
quantum algorithms and explains the speed up. From the other, it provides a possible mean-
ing to the common sense statement that we can perceive a lot of information all together
and simultaneously in the so called “present”. A quantum state can hold any amount of
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information, which is simultaneously processed by the sequence: preparation, unitary trans-
formation, and measurement. The entire processing is simultaneous in the sense that there
is simultaneous dependence between all amplitudes at any pair of times along the process.
I conjecture that the time interval spanned by backdated state vector reduction, character-
ized by simultaneous dependence across time, corresponds to the introspective notion of
“present”.

The observation that, in visual perception, we take into account many things at the same
time acquires a literal meaning. Taking into account many things at the same time is ex-
actly what many body interaction—nondeterministic simultaneous computation—does. In
this perspective, the wholeness/unity/Gestalt of conscious perception is not the epiphenom-
enon of an independent deterministic activity but an essential feature of the present form of
nondeterministic computation.

It might be interesting to compare these notions with the idealized bouncing ball model
of classical computation, where simultaneous dependence is limited to the variables of ball
pairs in the instant of their collision. The amount of information simultaneously processed
cannot scale up, not to bring in many ball collisions and an uncontrollable form of nonde-
terminism. The deterministic, two-body character of classical computation prevents taking
into account many (so to speak, more than two) things at the same time, or (in present as-
sumptions) hosting perception either.

The present identification between the notions of simultaneous dependence, physical law,
and perception has a precedent in Plato’s notion of Form (the Greek word Eidos translates
into Form, Idea, or Vision): “Ideas are objective perfections that exist in themselves and for
themselves, at the same time they are the cause of natural phenomena, they keep phenomena
bound together and constitute their unity.” In this quotation from Phaedo, the Ideas of our
mind are clearly identified with physical laws; as well known, Platonic Ideas are also perfect
mathematical objects. The usual Platonist interpretation of this ambivalence is that the mind
can access an autonomous and objective world of perfect mathematical ideas. A more phys-
ical interpretation is the other way around, the ideas in our head—our perceptions—could
be represented as physical laws, namely as objectively perfect simultaneous dependences.

The present idea that “grasping the solution of a problem” implies a simultaneous depen-
dence representing the problem-solution interdependence, is parallel to another statement
of the theory of Forms: “To know the Form of X is to understand the nature of X; so the
philosopher who, for example, grasps the Form of justice, knows not merely what acts are
just, but also why they are just.”

The connection between the world of Ideas, the physical world, and the mental world is
also central to Penrose and Hameroff search for a quantum theory of consciousness—the
very existence of consciousness is ascribed to our capability of accessing the Platonic world
of perfect mathematical Forms [25, 29]. See also [33].

The following Sects. 2 through 4 provide a detailed development of the model of simulta-
neous computation. In Sect. 5, I try to position the present approach within the development
of the notion of quantum computation. Section 6 provides an account of the Turin workshops
and a commented bibliography of my publications on the subject of quantum computation.

2 Simultaneous Computation in an Idealized Classical Framework

By assuming a perfect nonfunctional simultaneous dependence between all computational
variables, one can devise an idealized classical machine that—thanks to a many body
interaction—nondeterministically produces the solution of a system of Boolean equations
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under the simultaneous influence of all equations. We can start with the simple problem of
finding the solutions of the equation y = x, i.e. x = 0, y = 1 and x = 1, y = 0. Let X, Y , Q

be real non-negative variables. The Boolean problem can be transformed into the problem
of finding the solutions, for Q > 0, of the simultaneous equations

X

Q
+ Y

Q
= 1, (1)

(
X

Q

)2

+
(

Y

Q

)2

= 1. (2)

Q = 0 implies X = Y = 0, while X
Q

and Y
Q

are individually undetermined. With Q > 0,
X
Q

≡ x and Y
Q

≡ y: one can see that X = 0, Y = Q > 0 corresponds to the Boolean values
x = 0, y = 1 and X = Q > 0, Y = 0 to x = 1, y = 0.

In this real variable representation, the solutions can be computed by a many body inter-
action, as follows. Equation (1) can be represented by an idealized hydraulic circuit where
Q is the coordinate of a piston feeding in parallel (through an incompressible fluid) two
pistons of even section and mass, and coordinates respectively X and Y . Equation (2) is rep-
resented by a differential mechanism with non-linear (parabolic) cams applying to pistons
X, Y , and Q (I use the same symbol to denote the piston and its coordinate). The initial
configuration of the machine is X = Y = Q = 0; it can be argued that any movement of pis-
ton Q from Q = 0 to Q > 0 instantly produces a solution in a nondeterministic way. This
motion could be obtained by applying a force to piston Q, then there would be no reason that
either X or Y (in a mutually exclusive way) move with Q, as either movement offers zero
static resistance to the force (there is only the inertia of the pistons). This reversible, non-
deterministic many body interaction should be postulated in the present idealized classical
framework, in the quantum framework it becomes a representation of measurement.

Unlike deterministic reversible processes, the present process is not invertible—in gen-
eral one cannot go back and forth along the same process. For example, we can think of
connecting the input piston to an ideal spring charged when Q = 0. On the one side, there
would be oscillations without dissipation. On the other, at each oscillation, the movement
of the input piston from Q = 0 to Q > 0 would randomly drag either X or Y in a mutually
exclusive way.

This idealized computation mechanism can solve any system of Boolean equations,
namely of N NAND equations xi,3 = NAND(xi,1, xi,2), with i = 1, . . . ,N and xi,j = xh,k

for some assignments of i, j , h, k. The hydraulic circuit becomes the series of an input
branch/piston Q and N quadruples of parallel branches/pistons Xi,j , j = 1, . . . ,4. The four
branches/pistons of each quadruple are labeled by the Boolean values that satisfy the corre-
sponding NAND equation. For example, branches/pistons Xi,1; Xi,2; Xi,3; Xi,4 are labeled
by, respectively, xi,1 = 0, xi,2 = 0, xi,3 = 1; xi,1 = 0, xi,2 = 1, xi,3 = 1; xi,1 = 1, xi,2 = 0,
xi,3 = 1; xi,1 = 1, xi,2 = 1, xi,3 = 0. “Fluxes” Xi,j in the branches of the same quadruple
are made to be mutually exclusive with one another by nonlinear transmissions between the
corresponding pistons and the total flux across branches labeled by the same value of the
same Boolean variable is made to be conserved across different quadruples by linear trans-
missions between the corresponding pistons. By applying a force to the input piston Q, the
machine’s motion from Q = 0 to Q > 0 instantly produces a solution under the simulta-
neous influence of all the problem constraints (in each quadruple, there is only one branch
with flux > 0, the series of all these branches is labeled by a Boolean assignment that solves
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the system). By using the partial OR (POR) gate instead of the NAND gate, quadruples can
be replaced by triples.

This idealized machine has the only purpose of introducing the idea of simultaneous
computation, namely of a computation mechanism that, thanks to a perfect nonfunctional
simultaneous dependence between all its degrees of freedom, nondeterministically produces
the solution of a problem under the simultaneous influence of all the problem constraints.

3 Quantum Computation as Simultaneous Computation

To see that quantum computation is simultaneous computation, we should replace the con-
figuration space of the idealized classical machine by the phase space of the quantum ma-
chine. Simultaneous dependence between the coordinates of the machine parts becomes
simultaneous dependence between the populations of the reduced density operators of the
parts of the computer register. Let us consider the previous example of solving the Boolean
equation y = x. The motion of the idealized machine from Q = 0 to Q > 0 is analogous to
measuring two qubits in the entangled state |0〉X|1〉Y + |1〉X|0〉Y . Simultaneous dependence
is represented by a relation between symbolic variables. Let us represent the populations of
the reduced density operator of the first (second) qubit by the variables x11, x22 (y11, y22).
The state before measurement corresponds to the assignment x11 = x22 = y11 = y22 = 1

2 , the
state after measurement to x11 = 1, x22 = 0, y11 = 0, y22 = 1 or, in a mutually exclusive
way, x11 = 0, x22 = 1, y11 = 1, y22 = 0. The transition imposed by the quantum principle is
isomorphic with the transition from Q = 0 to Q > 0 of the idealized classical machine and
can be represented in exactly the same way. The correspondence between coordinates and
populations is:

X

Q
= x11(tr ) = 1 − x22(tr ),

Y

Q
= y11(tr ) = 1 − y22(tr ). (3)

Reduction occurs under the same non functional simultaneous dependence, repeated here
for convenience:
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= 1, (4)
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)2

= 1. (5)

The transition from Q = 0 to Q > 0 produces state vector reduction, which is thus iso-
morphic with a many body interaction that performs a nondeterministic computation. The
infinite precision required by the classical machine to produce the solution through a many
body interaction is thus replaced by state vector reduction. That infinite classical precision
can be dispensed for because of quantization was already noted by Finkelstein [21].

Summing up, the solution of the problem is reversibly and nondeterministically produced
under a nonfunctional simultaneous dependence representing all the problem constraints and
conserved throughout state vector reduction. This is an alternative way of formulating the
quantum principle (stating that the state before measurement is projected on the subspace of
an eigenvalue of the measured observable), closer to the notion of physical law—of trans-
formation under a perfect nonfunctional simultaneous dependence—and more suited to the
present computational context.
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I should note that simultaneous dependence is not limited to the populations immediately
before and after measurement, it extends to all the amplitudes of the basis vectors αj (t) at
any time t of the process: preparation, unitary development, and measurement. In fact the
transition from Q = 0 to Q > 0 changes any αj (t) from the value before reduction to the
value after reduction, changing the forward development into the backward development
(the same unitary transformation but ending with the state after reduction). We should think
to supplement equations (3), (4), and (5), representing the nonfunctional part of the simul-
taneous dependence, with the infinite system of equations representing (for any time t) the
functional dependence of the αj (t) on the xi,i(tr ).

4 An Explanation of the Speed up

The fact that, in the quantum context, simultaneous computation is the nondeterministic
production of the solution under a nonfunctional simultaneous dependence representing the
problem-solution interdependence, is almost evident in the algorithms of Simon [32] and
Shor [31]. Here the computation of the periodic function f (x)produces an entangled state
of the form

N∑
x=1

|x〉X|f (x)〉K; (6)

this is the unitary development of an initial state where register Xis in an even superposition
of all the possible values of x and register K is in a sharp value. The final measurement
is equivalent to measuring the content of register K—the value of f (x)—in state (6), for
the retroactivity of state vector reduction in a reversible evolution. Say that the outcome of
measurement is f (x0). This measurement induces a state vector reduction from state (6) to

(
M∑

m=1

|x0 + mT 〉X
)

|f (x0)〉K, (7)

where T is the period. By applying the quantum Fourier transform to this superposition of
arguments (another unitary transformation), one extracts the period of the function (disre-
garding the probability of error); therefore one can say that (7) is the solution of the problem
up to a unitary transformation of the computational basis. We can see that the amplitudes
of the basis vectors throughout preparation/unitary evolution/measurement are submitted to
a nonfunctional simultaneous dependence representing problem-solution interdependence,
exactly as illustrated in Sect. 3. State vector reduction produces the solution under this si-
multaneous dependence. This is of course simultaneous computation.

On the contrary, simultaneous computation is completely hidden in Deutsch’s [16] and
Grover’s [23] algorithms, which yield their speed ups through unitary evolutions—I am
presently considering Cleve’s et al. [15] revisitation of Deutsch’s algorithm and Grover’s
algorithm for a database size that provides no probability of error. However, this can be
ascribed to the fact that these algorithms physically represent only the procedure that leads to
the solution, whereas the interdependence between the problem and the solution (an essential
feature of simultaneous computation) is disregarded.

We are dealing with quantum games. One player chooses at random one of the four
functions in Deutsch’s problem, or a data base location in Grover’s problem, the other player
must find out the choice of the first player (a character thereof in Deutsch’s problem), but
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the physical representation does not comprise the random generation of the move of the
first player. Simultaneous computation (problem-solution interdependence) does not appear
since the problem is not represented physically.

Let us focus on Grover’s algorithm and let the size of the database be N . In the conven-
tional algorithm, the quantum database is represented by a quantum computer that, given an
input x, computes δ(k, x), where δ is the Kronecker function and k is the database location
randomly chosen by the first player. For each input x provided by the second player, the
computation of δ(k, x) tells whether it is the database location chosen by the first player.
The second player prepares the input register X in an even superposition of all the possible
values of x. To find out the choice of the first player, the algorithm has to compute δ(k, x)

the order of
√

N times, instead of N like in the classical case.
To physically represent the problem, it suffices to represent the random generation of

k on the part of the first player. To this end, we add an ancillary register K prepared in a
superposition of all the possible values of k. The extended algorithm repeatedly computes
δ(k, x) as before but now for a superposition of all the possible combinations of values
of k and x. This entangles each possible value of k with the corresponding solution (the
same value of k) found by the second player at the end of the algorithm. For example, with
database size N = 4, the state before measurement is:

1

2
√

2

(|00〉K |00〉X + |01〉K |01〉X + |10〉K |10〉X + |11〉K |11〉X
)(|0〉F − |1〉F

)
. (8)

Measuring the content of registers K and X determines the moves of both players—also
representing the random choice of the value of k on the part of the first player. The state
vector reduction induced by measuring the content of register K can be backdated to before
running the algorithm. This leaves the initial preparation of register X—a superposition of
all the possible values of x—unaltered (because of the unitary transformations in between)
and brings that of register K to a sharp value, thus representing exactly the original Grover’s
algorithm.

Thus, by completing the physical representation of Grover’s algorithm, one finds again a
succession of entanglement and disentanglement and the nondeterministic production of the
solution under a nonfunctional simultaneous dependence representing the problem-solution
interdependence. The nondeterministic production of the contents of registers Kand X can
be seen as mutual determination between these contents, which justifies the square root
speed up with respect to a classical database search, where the content of the former register
determines that of the latter and not vice-versa. By ascribing the speed up to mutual deter-
mination between register contents, one finds that it is bounded by state vector reduction
through an entropic inequality, as follows.

Mutual determination does not mean that the choice of the first player determines the
solution found by the second player at the end of the algorithm, which would be the clas-
sical database search. Neither it means that the solution found by the second player at the
end of the algorithm creates the choice of the first player, which would also be unilateral
determination.

Mutual determination is symmetrical, it can be represented by saying that the contents of
the two registers are determined by the measurement of the first (second) bit of register K

and the second (first) bit of register X. Thus Grover’s algorithm is equivalent to the follow-
ing game. We should think to arrange the N database locations in a matrix of

√
Ncolumns

and
√

N rows—with N = 4 the row can be identified by the first bit of either register, the
column by the second bit. At the end of Grover’s algorithm, the first player determines, say,
the row by measuring the first bit of register K in state (8)—this is equivalent to determining
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the row before running the algorithm, for what said before. The second player determines
the column by measuring the second bit of register X. The related state vector reduction can
be backdated to before running the algorithm, namely to the initial preparation of the two
registers K and X, each in an even superposition of all the possible values of, respectively,
k and x. This leaves the initial preparation of register X unaltered and reduces that of regis-
ter K to the superposition of all the values of k ending by that bit (determining the column
before running the algorithm). In this picture, Grover’s algorithm searches just the row ran-
domly chosen by the first player, which justifies the O(

√
N) computations of δ(k, x), i.e.

the square root speed up (of course the picture should be symmetrized for the exchange of
columns and rows).

The same justification holds in the case that the value of k is already determined before
running the algorithm, like in virtual database search; this situation is indistinguishable from
the random generation of k at the end of the algorithm, since state vector reduction can be
backdated so that k is already determined before running the algorithm. With k predeter-
mined, the preparation of register K in an even superposition of all the possible values of k

represents the initial ignorance of the value of k on the part of the second player. Since there
is no more determination of the column on the part of the second player, mutual determina-
tion between the contents of registers K and X becomes “precognition” of the column on
the part of the second player. “Precognition” corresponds to backdating, to before running
the algorithm, the state vector reduction induced by the measurement of (say) the second
bit of register X, which leaves (as said before) the initial preparation of register X unaltered
and determines the second bit in the initial preparation of register K (determines the col-
umn), reducing the initial ignorance of the second player about the value of k. The related
information gain is

�S = 1

2
lgN, (9)

one bit with N = 4. Besides database size, N is the ratio between the size of the superposi-
tion before measurement (8 terms with amplitudes even in modulus—see (8)) and the size
of the subspace on which the superposition is projected by quantum measurement (the 2 di-
mensions of the Hilbert space of register F ). It is thus a measure of state vector reduction.

I should like to quote the question raised by Grover in his paper [24]: “What is the reason
that one would expect that a quantum mechanical scheme could accomplish the search in
O(

√
N) steps? It would be insightful to have a simple two line argument for this without

having to describe the details of the search algorithm.” The “precognition” explanation
might provide this argument. Casting it in two lines: “the speed up is the reduction of the
initial ignorance of the solution due to backdating, to before running the algorithm, a time-
symmetric part of the state vector reduction on the solution.”

A similar extension of Deutsch’s algorithm yields the state before measurement:

1

2
√

2

[(|00〉K + |11〉K
)|0〉X + (|01〉K + |10〉K

)|1〉X
](|0〉F − |1〉F

)
(10)

where k = 00,01,10,11 specifies the function randomly chosen by the first player and x is
the answer provided by the second player (whether the function is balanced or constant).
State (10) is reached by invoking the computation of the function only once instead of
the two times required in the classical case. Although things are less symmetrical than in
database search, as the two registers have different length, there is still a succession of en-
tanglement and disentanglement, and mutual determination between the contents of the two
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registers K and X. The information gain �S = 1
2 lgN , associated to backdating a time sym-

metric part of the state vector reduction on the solution, is one bit—the ratio of Hilbert space
sizes before and after measurement is still N = 4. This is consistent with the fact that the
speed up of Deutsch’s algorithm consists in having to check the value of one bit rather than
the two required in the classical case.

Equation (9) can be rewritten by noting that lgN , the logarithm of the squeeze of Hilbert
space size, is the von Neumann entropy of the reduced density operator of register K in
state (8):

�S = 1

2
�R. (11)

I call this entropy �R since it is also the decrease of entropy of register K during state vector
reduction—before reduction K is maximally entangled, after reduction it is in a sharp state
and its entropy is zero. �R can be used as an entropic measure of state vector reduction. It
is more general than the logarithm of the ratio of Hilbert space sizes, with which it coincides
in the case of even modulus amplitudes.

Similarly, the information gain �S associated with partial backdated state vector reduc-
tion can be used as a measure of the speed up. This means defining the speed up—when
applicable—as the reduction of the logarithmic size of the problem such that the time taken
by the quantum algorithm to solve the problem is the same as the time taken by the classical
algorithm to solve the reduced problem.

For example, in the case of Grover’s algorithm, if database size is N = 4, the logarithmic
size of the problem is lg 4 = 2 (the number of bits of register K), the logarithmic size of
the reduced problem is lg 2 = 1. The time taken by the quantum algorithm to solve the
problem of 2 bits is the same as the time taken by the classical algorithm to solve the problem
of 1 bit—in both cases δ(k, x) is computed once.

Equation (11) states that this measure of the speed up is 50% of the entropic measure of
state vector reduction in both Grover’s and Deutsch’s algorithms. These algorithms concern
unstructured problems. More in general, the notion that the speed up is partial backdated
state vector reduction implies:

�S ≤ �R, (12)

where �R, the entropic measure of state vector reduction, can be defined in general as
the entropy of the reduced density operator of the observable being measured. We can do
without the details of the quantum algorithm by considering the state immediately before
the measurement projection, when the observable is maximally entangled with the pointer
of the measurement apparatus. In particular, inequality (12) states that, when the problem-
solution interdependence is physically represented, there is no speed up without state vector
reduction [9].

5 Positioning

I try to position the present approach within the early development of the notion that compu-
tation is a physical process. This development can be segmented as follows: (I) Investigation
of the thermodynamic aspect of classical computation [4, 27]. (II) Introduction of the com-
putational notion of chronon in quantum relativity [19]. (III) Introduction of the notion of
quantum bit and identification of computation in the quantum framework [20]. (IV) Dis-
covery of the logical reversibility of computation and that reversible classical computation
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dissipates no energy in the limit of zero speed [2, 3]. (V) Discovery of an idealized classical
model of reversible computation [22]. (VI) Development of quantum algorithms with no
speed up [1, 18]. (VII) Discovery of the quantum speed up, namely that there are quantum
algorithms essentially quicker than their classical counterparts [16]. Since then, research
has focused on finding more speed ups, fostering the robustness of the computation process
against decoherence, and developing laboratory implementations.

One can distinguish two phases in the above development. In the first phase,
(II) through (VI), quantum computation is a unitary evolution and there is no expectation
of a speed up. The fundamental computation model is deterministic reversible computation.
The second phase starts with the first speed up discovered by Deutsch (VII). The fact that
it is reached through a unitary evolution is here ascribed to the incompleteness of the phys-
ical representation. By completing the representation (by representing the problem), one
can see that the solution is nondeterministically produced under a nonfunctional simultane-
ous dependence representing problem-solution interdependence. This shows that quantum
computation is simultaneous computation and that the speed up is bounded by state vec-
tor reduction through an entropic inequality. Thus, in the second phase, the deterministic
reversible computation model of the first phase should be replaced by the nondeterminis-
tic reversible model of simultaneous computation. One goes from the former to the latter
model by replacing functional simultaneous dependence by nonfunctional simultaneous de-
pendence.

6 Toward the Turin Workshops

The origin of my special interest in a simultaneous form of computation goes back to an
intuition on the nature of the mind I had at the age of 16. I thought to have seen that our
mind is generated by the dialog between a limited number of “fundamental feelings”; each
feeling, while keeping its identity, was becoming something new and richer in the dialog,
while the entire dialog was simultaneously perceived. An account of that experience can be
found in the on-line Archives of Scientists’ Transcendent Experiences, under the title “From
an altered state of consciousness to a life long quest of a model of mind” [8].

When I studied electronic engineering at the Politecnico of Turin, I went in depth into
the theory of formal languages, artificial intelligence, and self organizing systems, looking
for a correspondence with some aspects of the intuition. After my university degree, com-
promising with practical needs, I started working to avionics in the aviation division of Fiat,
then moved to Seattle where I worked for three years at Boeing and experienced what a
best practice at an international level is. Eventually I came back to Italy to work in Elsag,
the company that later sponsored the international Elsag Bailey-ISI Turin workshops. I was
attracted by a very advanced artificial intelligence program that was on its start. Under the
direction of Luigi Stringa, we developed the first programmable parallel processor commer-
cialized in the world, with industrial applications to pattern recognition. The system was
used for address recognition by the postal services of Italy, the United States, and several
European countries.

Still with Elsag, I used my familiarity with the US technology environment to organize
joint projects with some of the best US information technology groups. Noticeably, we have
been working with two of the creators of ARPANet, Vinton G. Cerf, 2004 Alan Turing
Award for inventing with Robert E. Kahn the TCP/IP protocol, and Barry Wessler—and their
groups. By using the internetworking architecture underlying Internet, we developed nation-
wide hybrid electronic mail systems and tracking and tracing systems for the Italian Post
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office and, in subsequent years, many others. The large systems division I was responsible
for was profitable, with its yield Elsag started an acquisition strategy, in particular through
the friendly acquisition of the American Bailey, thus becoming Elsag Bailey and second
in the world in the electronic control of continuous industrial processes, immediately after
Honeywell.

In that period, my compromising with the wish to decipher the intuition consisted in
comparing my recollection of it with my growing understanding of information processing.
However, classical computation—even the parallel processing that attracted me to Elsag—
did not match the recollection. This brought me to quantum computation along the lines
already expounded.

I went to Mario Rasetti (we have been school-fellows at both high school and the Politec-
nico of Turin) who got interested in my ideas and soon discovered that there was a newly
borne quantum information theory—we were in the late eighties. Our shared interest in the
new theory, my habit to join the best IT practices at an international level, and the ISI bent to
scientific interchange naturally brought us to think of an international workshop on quantum
information.

I involved my company, obtaining from its chief executive officer Enrico Albareto—who
was strongly oriented toward innovation and had already funded two chairs in US universi-
ties (MIT and Harvard) at the time of the acquisition of Bailey—the authorization to finance
the workshop within my division’s budget. Naturally I cared to give my company some-
thing in exchange. Today Elsag (the multinational Bailey part has been sold to Hartman &
Brown by the holding company Finmeccanica) is still hosting a quantum lab and developing
a quantum cryptography product centered on its market.

In 1992 we signed a cooperation protocol between Elsag Bailey and ISI and soon after-
wards got in touch with Roger Penrose who helped us to organize the winter 1992 Oxford
meeting (in view of the first Turin workshop). I would like to conclude the present account
by providing a testimony of that meeting.

I remember the philosopher of science David Albert and the physicists Charles Bennett,
David Deutsch, Artur Ekert, Roger Penrose (we were guests of his Oxford University office),
Mario Rasetti, Tom Toffoli, and Wojcieck Zurek, each in turn laying out his own vision of
the field of quantum information, with David Deutsch already addressing in a unified way
quantum computing, the philosophy of science of Popper and the theory of evolution of
Darwin, Artur Ekert speaking of the practical application of quantum cryptography, Charles
Bennett talking about the theory of teleportation, and all together discussing the organization
of the future Turin workshop. There was a curious debate about its title, with a preference of
Charles Bennett for quantum communication, of David Deutsch and David Albert for quan-
tum computation, and a simple trade off proposed by Tom Toffoli, “quantum communication
and computation”, which of course remained in time.

But what struck me more was the enthusiastic desire of exchanging with one another
ideas and recent results in a long dinner evening in a nearby pub, with Artur Ekert ex-
plaining to me the possible commercial applications of quantum cryptography, Tom Toffoli
illustrating to my former boss Giuseppe Cuneo and colleague Giorgio Musso his universal
cellular automaton, David Deutsch and David Albert arguing pro and against Popper before
an amused Tom Toffoli, and everybody writing down formulas on paper napkins and table-
cloths. In that evening, all the factors that made the Turin workshops and the development of
the field a success were already coming out with evidence. Then those workshops remained
historically geared with an extraordinarily lucky crossover between computer science and
quantum computing, between theoretical and experimental quantum information, and with
the fast development of the field. By the way, in spite of the presence of many blackboards
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in the ISI institute, in villa Gualino on the hills of Turin, writing on paper napkins and table-
cloths remained the preferred means of communication between physicists throughout those
many workshops.

Besides the Turin workshops, my activity in the field of quantum computation can be
summarized as follows. Since the first Turin workshop, I put forward the concept of quan-
tum ground state computation [5, 6, 12, 13], which is natural in the context of simultaneous
computation. The linear relations between populations of different observables required by
simultaneous computation are implemented through a series of relaxations on the ground
state. This form of computation promised a quantum speed up because of tunneling through
energy barriers. Today, quantum ground state computation is believed to yield a square root
speed up in any NP problem, but in the early nineties it did not attract much attention. Be-
cause of its mathematical intractability, it could not compete with the well defined unitary
evolutions of the quantum algorithms, which were at that time in their bloom. At the end
of the nineties, quantum ground state computation started receiving more attention. I joined
forces with Artur Ekert, who had the idea of replacing the heat bath interaction by the adi-
abatic deformation of an initial trivial Hamiltonian into the problem Hamiltonian. We were
on the point of working out the idea when there was the publication of the paper by Farhi et
al. [17], as it happens in times of scientific competition. In [11], we also tried to replace the
dynamic constraint of minimum energy by kinematic constraints due to particle statistics;
in [26], we replaced dynamics by kinematics—a search that I consider still in progress.

After the Turin workshops, I published, with others, a few papers that ascribe the quan-
tum speed up to the non causal joint-determination of the measurement outcome by the
state before measurement and the quantum principle [7, 10, 14]. We showed that joint-
determination was responsible for all the speed-ups discovered until then. Soon afterwards
[30] there was the first paper on cluster computing, where the use of entanglement and dis-
entanglement by quantum measurement becomes explicit.

Acknowledgements Thanks are due to David Finkelstein and Artur Ekert for encouragement to write down
my way of thinking about quantum computation and, extended to Shlomit Ritz Finkelstein, for stimulating
discussions.
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